1. Постройте треугольник по стороне, противолежащему углу и медиане, проведенной к другой стороне (исследование вопроса о количестве решений не требуется).
2. В выпуклом четырехугольнике ABCD <ABC= 900, <BAC = <CAD, AC = AD, DH — высота треугольника ACD. В каком отношении прямая BH делит отрезок CD?
3. Внутри отрезка АС выбрана произвольная точка В и построены окружности с диаметрами АВ и ВС. На окружностях (в одной полуплоскости относительно АС) выбраны соответственно точки M и L так, что <MBA = <LBC. Точки K и F отмечены соответственно на лучах ВМ и BL так, что BK = BC и BF = AB. Докажите, что точки M, K, F и L лежат на одной окружности.
4. В треугольнике ABCM — точка пересечения медиан, O — центр вписанной окружности, A', B', C' — точки ее касания со сторонами BC, CA, AB соответственно. Докажите, что, если CA' = AB, то прямые OM и AB перпендикулярны.
5. Дан треугольник АВС. Точка О1 — центр прямоугольника ВСDE, построенного так, что сторона DE прямоугольника содержит вершину А треугольника. Точки О2 и О3 являются центрами прямоугольников, построенных аналогичным образом на сторонах АС и АВ соответственно. Докажите, что прямые АО1, ВО2 и СО3 пересекаются в одной точке.
6. На плоскости расположен круг. Какое наименьшее количество прямых надо провести, чтобы, симметрично отражая данный круг относительно этих прямых (в любом порядке конечное количество раз), можно было накрыть им любую заданную точку плоскости?
Свободная Mатематика - сайт о математике, математиках и для математиков. Олимпиады по математике, справочники по математике, занимательная математика, школьная математика, высшая математика, история математики, математика для малышей, математический форум для учащихся и преподавателей.