Аналитическая геометрия, раздел геометрии, который исследует простейшие геометрические объекты средствами элементарной алгебры на основе метода координат. Создание аналитической геометрии обычно приписывают Р.Декарту, изложившему ее основы в последней главе своего трактата Рассуждение о методе, озаглавленной Геометрия (1637). Однако сам метод был известен П.Ферма еще в 1629, о чем свидетельствует его переписка. Аналитическая геометрия стала неоценимым подспорьем для математического анализа, изобретенного вскоре Ньютоном (1665–1666) и Лейбницем (1675–1676).
Методы аналитической геометрии применимы к фигурам на плоскости и к поверхностям в трехмерном пространстве, а также допускают естественное обобщение и на пространства более высоких размерностей. Мы начнем с аналитической геометрии на плоскости.
Сущность метода координат состоит в следующем. На плоскости задаются две взаимно перпендикулярные прямые (координатные оси), пересекающиеся в точке О, называемой началом координат. Одна из них – ось x, или ось абсцисс, обычно выбирается горизонтальной, другая – ось y, или ось ординат, – вертикальной. Справа от O выбирается точка, у которой ставится отметка 1. Если принять отрезок от O до 1 за единицу длины, то откладывая последовательно этот отрезок вдоль прямой, мы получаем числовую ось. Считается, что эта ось продолжается вправо до бесконечности. Точки на оси x слева от O помечаются отрицательными числами, как на шкале термометра. Например, точка -2 расположена от точки O слева на таком же расстоянии, как точка 2 справа. Аналогичным образом с той же единицей длины размечается и ось y. Положительные числа располагаются выше точки O, отрицательные – ниже.
Пусть P – любая точка на плоскости с заданной системой координат, Q – основание перпендикуляра, опущенного из P на ось x, а R – основание перпендикуляра, опущенного из P на ось y. Положение точки P полностью определяется двумя числами, называемыми координатами x и y. Первая координата указывает положение точки Q на оси x, вторая – положение точки R на оси y. На рис. 1 положение точки P полностью определяется ее координатами (2,3).
Основная задача аналитической геометрии заключается в изучении геометрических фигур с помощью соотношений между координатами точек, из которых эти фигуры образованы. Любую фигуру можно рассматривать как множество точек, удовлетворяющих некоторому геометрическому условию. Это условие можно записать в виде алгебраического уравнения, связывающего координаты x и y каждой точки фигуры. Суть метода аналитической геометрии состоит в изучении свойств фигуры с помощью соответствующего уравнения, исследуемого средствами алгебры. Этот метод позволяет устанавливать геометрические факты систематичным образом, в отличие от традиционной «синтетической» геометрии, где приходилось изобретать методы доказательства для каждого отдельного случая.
Основным инструментом аналитической геометрии служит формула для вычисления расстояния между двумя точками P1 = (x1,y1) и P2 = (x2,y2). Числа x1, y1, x2 и y2 могут быть любыми действительными числами, положительными, отрицательными или 0. На рис. 2 все числа выбраны положительными. Проведем через точку P1 горизонтальную прямую, а через точку P2 – вертикальную. Пусть R – точка их пересечения. Тогда по теореме Пифагора
Рис. 2. РАССТОЯНИЕ МЕЖДУ ДВУМЯ ТОЧКАМИ можно найти, если построить прямоугольный треугольник с катетами, параллельными осям координат. Расстояние между точками P1 и P2 устанавливается по теореме Пифагора.Рис. 2. РАССТОЯНИЕ МЕЖДУ ДВУМЯ ТОЧКАМИ можно найти, если построить прямоугольный треугольник с катетами, параллельными осям координат. Расстояние между точками P1 и P2 устанавливается по теореме Пифагора.
Рис. 1. ДВЕ ВЗАИМНО ПЕРПЕНДИКУЛЯРНЫЕ ПРЯМЫЕ, называемые осью x и осью y, составляют основу для большинства операций в аналитической геометрии на плоскости. Именно они позволяют использовать алгебраические средства в геометрии и геометрические – в алгебре. Будучи снабженными шкалами, они представляют координаты точки. Например, точка P имеет координату x, равную 2, и координату y, равную 3.
откуда
d 2 = (x2 – x1)2 + (y2 – y1)2.
Это и есть формула для вычисления расстояния между двумя точками.
Важно иметь в виду, что эта формула остается в силе независимо от того, как расположены точки P1 и P2. Например, если точка P2 расположена ниже точки P1 и справа от нее, как на рис. 3, то отрезок RP2 можно считать равным y1 – y2, а не y2 – y1. Расстояние между точками, вычисляемое по формуле, от этого не изменится, так как (y1 – y2)2 = (y2 – y1)2. Заметим, что так как величина y2 в этом случае отрицательна, разность y1 – y2 больше, чем y1, как и должно быть.
Свободная Mатематика - сайт о математике, математиках и для математиков. Олимпиады по математике, справочники по математике, занимательная математика, школьная математика, высшая математика, история математики, математика для малышей, математический форум для учащихся и преподавателей.