В рассуждениях тех, кого можно отнести к законодателям или последователям формального языка математической логики, нередко обнаруживается своеобразная "слепота" по отношению к элементарным логическим ошибкам. На эту слепоту в основополагающих работах Г. Кантора, Д. Гильберта, Б. Рассела, Дж. Пеано и др. еще в начале нашего столетия обратил внимание один из великих математиков Анри Пуанкаре.
Логика - не только математическая, но и философская наука. В XX веке эти две взаимосвязанные ипостаси логики оказались разведенными в разные стороны. С одной стороны логика понимается как наука о законах правильного мышления, а с другой - она преподносится как совокупность слабо связанных друг с другом искусственных языков, которые называются формальными логическими системами.
В мышлении понятия не выступают разрозненно, они определенным способом связываются между собой. Формой связи понятий друг с другом является суждение. В каждом суждении устанавливается некоторая связь или некоторое взаимоотношение между понятиями, и этим самым утверждается наличие связи или взаимоотношений между объектами, охватываемыми соответствующими понятиями.
Математическая логика понятие достаточно неконкретное, из-за того, что
математических логик также бесконечно много. Здесь будем обсуждать
некоторые из них, отдавая больше дань традиции, чем здравому смыслу.
Поскольку, весьма возможно, в этом и заключен здравый смысл... Логично?
Свободная Mатематика - сайт о математике, математиках и для математиков. Олимпиады по математике, справочники по математике, занимательная математика, школьная математика, высшая математика, история математики, математика для малышей, математический форум для учащихся и преподавателей.