v Добавить материал
v Справочник по математике
v Головоломки со спичками
v Вопросы посетителям

Главная

ЕГЭ 2015

ЧАТ

ПРИМЕРЫ

RSS
МАТЕРИАЛЫ

ОГЭ 2015

ТЕСТЫ

Связь



Привет, Гость

Ваша группа: Гости
Вход на сайт | Регистрация
Онлайн всего: 10
Гостей: 10
Пользователей: 0
Занимательная
математика
Высшая
математика
Школьная
математика
История
математики
Математика
для малышей
Реклама
Здесь может быть Ваша реклама, подробнее...

Разное

Математическая логика и логика «здравого смысла»

Математическая логика понятие достаточно непонятное из-за того, что математических логик очень много. Здесь рассмотрим некоторые из них, отдавая больше дань традиции, чем здравому смыслу. Поскольку, весьма возможно, в этом и заключен здравый смысл... Логично?

Математическая логика учит рассуждать не больше, чем любой другой раздел математики. Это связано с тем, что "логичность" рассуждений в логике определяется самой логикой и корректно может использоваться только в самой логике. В жизни же мы, размышляя, как правило используем разные логики и разные методы рассуждений, перемешивая дедукцию с индукцией... Более того, в жизни мы строим свои рассуждения исходя из противоречивых посылок, например, "Не откладывай на завтра, что можно сделать сегодня" и "Поспешишь людей насмешишь". Нередко бывает, что не понравившийся нам логический вывод приводит к пересмотру исходных посылок (аксиом).

Классическая логика не занимается смыслом. Ни здравым, ни каким другим! Для изучения здравого смысла, между прочим, существует психиатрия, а в психиатрии логика скорее вредна.

Разумеется, отделяя логику от смысла, мы имеем в виду прежде всего классическую логику и житейское понимание здравого смысла. Нет запретных направлений в математике, поэтому исследование логикой смысла, и наоборот, в различных видах присутствует в ряде современных ответвлений логической науки.

(Хорошо сложилось последнее предложение, хотя определить термин "логическая наука" не возьмусь даже приблизительно). Смыслом, если угодно - семантикой, занимается, например, теория моделей. Да и вообще, термин семантика часто заменяют термином интерпретация. И если мы согласимся с философами, что интерпретация (отображение!) объекта есть осмысление его в некотором данном аспекте, то пограничные сферы математики, которые могут привлекаться для наступления на смысл в логике, становятся неохватными!

В практическом плане семантикой вынуждено интересоваться теоретическое программирование. А в нем, кроме просто семантики, есть и операционная, и денотационная, и процедуральная и т.д. и т.п. семантики...

Еще лишь упомянем апофеоз - ТЕОРИЮ КАТЕГОРИЙ, которая довела семантику до формального малопонятного синтаксиса, где смысл уже настолько простой - разложенный по полочкам, что до него простому смертному совсем невозможно докопаться... Это для избранных.

Так чем же занимается логика? Хотя бы в самой классической ее части? Логика занимается только тем, чем она занимается. (А это она определяет предельно строго). Главное в логике - это строго определиться! Задать аксиоматику. А дальше логические выводы должны быть(!) в значительной степени автоматическими...

Другое дело рассуждения по поводу этих выводов! Но эти рассуждения уже вне рамок логики! Поэтому в них требуется строгий математический смысл!

Может показаться, что это простая словесная эквилибристика. НЕТ! В качестве примера некоторой логической (аксиоматической) системы возьмем известную игру "пятнашки". Зададим (перемешаем) начальное расположение квадратных фишек. Далее игрой (логическим выводом!), а конкретно - перемещением фишек на свободное место, может заниматься некое механическое устройство, а вы можете терпеливо смотреть и радоваться, когда в результате возможных передвижек в коробочке сложится последовательность от 1 до 15. Но никто не запрещает контролировать механическое устройство и подсказывать ему, ИСХОДЯ ИЗ здравого СМЫСЛА правильные перемещения фишек, чтобы ускорить процесс. А может быть даже доказать, используя для логических рассуждений, например, такой раздел математики, как КОМБИНАТОРИКА, что при данном начальном расположении фишек получить требуемую финальную комбинацию невозможно вообще!

Не больше здравого смысла присутствует и в той части логики, которую называют ЛОГИЧЕСКОЙ АЛГЕБРОЙ. Здесь вводятся ЛОГИЧЕСКИЕ ОПЕРАЦИИ и определяются их свойства. Как показала практика, в некоторых случаях законы этой алгебры могут соответствовать логике жизни, а в некоторых нет. Из за такого непостоянства законы логики нельзя считать законами с точки зрения практики жизни. Их знание и механическое использование может не только помогать, но и вредить. Особенно психологам и юристам. Ситуация осложняется тем, что наряду с законами алгебры логики, которые то соответствуют, то не соответствуют жизненным рассуждениям, есть логические законы, которые часть логиков категорически не признают. Это относится прежде всего к так называемым законам ИСКЛЮЧЕННОГО ТРЕТЬЕГО и ПРОТИВОРЕЧИЯ.

Просмотров: 17192 | Добавил: Antil (24.09.2010) | Коментариев: 2

Похожий материал

+2  
1 Гость   (24.09.2010 12:01) [Материал]
Очень занимательно, читаешь и получаешь удовольствие!

0  
2 Гость   (23.03.2011 19:22) [Материал]
Очень интересная статья... люблю статьи о математике

Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Главная | Заработать | Авторские права | Наши партнеры | Обратная связь
Яндекс цитирования Яндекс.Метрика
http://free-math.ru (с) 2010-2024 гг. Дизайн от MirPS. Хостинг от uCoz.
Свободная Mатематика - сайт о математике, математиках и для математиков.
Олимпиады по математике, справочники по математике, занимательная математика, школьная математика, высшая математика, история математики, математика для малышей, математический форум для учащихся и преподавателей.